
RD-RI39 667 SOLVING GENERALIZED NETNORKS(U) NAVAL POSTGRADURTE i/i
SCHOOL MONTEREY CA 6 G BROWdN ET AL. MAR 82
NP555-82-8i2

UNCLSSIFIED F/G 12/1 NL

EEmmhEEmhmhEmhE
EhmhEEEEEEEEEE

71hEE~EEh

&6

1" .0~-- --- -

11.21 LA_ 1o,66

MICROCOPY RESOLUTION TEST CHART
N1414TO SUM1-OF STANDARDS-1963-A

T"v . %7 .- %.I

NPS55-82-012

NAVAL POSTGRADUATE SCHOOL
C ̂W Monterey, California

.',.

.ELECE

SOLVING GENERALIZED NETWORKS

by

Gerald G. Brown

and

Richard D. McBride

a March 1982

Approved for public release; distribution unlimited

Prepared for:

Naval Postgraduate School
Monterey,. California 93943

84 03. 22 041
,I,"F,.,' .::,-7. ;-a.- ..- ,. -,-. ., -.. .. , : -.. , , . ," . _ ..

NAVAL A)IHUT SCIIUUL
MUNT1YRkY, CLIkr'JkIA

Camodore x. H. *shumaker D~avid A. Schradly
Superintendent Provost

Reproduiction of all or part of this report is authorized.

d JLit~a'~bro9"I

G. Richard Li. Mc~ride
essor40orAssociate Professor

LMpartrtwnt ot Operations Research University of Souithern California

ReviewedReleased by:

4R

(,dn R. washflurn, Chaizruan Kneale T. Marshall
* Ujirtment ot Operations Research Uean ot Intormat ion, and

scene

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whn Date Ence*____

. REPOR REPORT DOCUMENTATION PAGEo. REta" ~DIMUCT°I(U.
1.RPRNUMMER f.GOVT ACCESSION 3RCPETsCTCGMNI

vi' NPS55-82-012 •/ 9
4. TITLE and Sb...o S. TYPE OF REPORT A PE,40D COVERED

SOLVING GENERALIZED NETWORKS Technical Report
March 1982

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(q) -B. CONTRACT ON GRANT NUMBER(a)

Gerald G. Brown
-Richard D. McBride

S. PERFORMING ORGANIZATION NANE AND ADDRESS I0. PRQGRAN "LENENT.1PROJECT. TASKAR EA a WORK UNit NUNOERS

Naval Postgraduate School
Monterey, CA 93943

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Naval Postgraduate School March 1982
Monterey, CA 93943 IS. NUMBER OF PAGES60

14. MONITORING AGENCY NAME & ADDRESS(i difermt Iro Controlling Offlce) IS. SECURITY CLASS. (of his report)

Unclassified

So. DECL ASSI FICATION/ DOWNGRADING
SCHEDULE

S I. DISTRIBUTION STATEMENT (of this Report)

V Approved for public release; distribution unlimited.

I?. DISTRIBUTION STATEMENT (of the abstrect entered in Block 20, if Tdiffiert frem Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Conthwe on reveres side It neooeeery aid Identi by biec nmmi nb)

Generalized Networks, Flow Networks, Minimum Cost Flow Networks,
Generalized Transshipment Problem, Primal Simplex Network

Optimization

1 20. ABSTRACT (Continue on revere Wde f necesomp' mid idenltf by leek mmi)

A complete, unified description is given of the design, implemen-
tation and use of a family of very fast and efficient large scale
minimum-cost (primal simplex) network programs. The class of
capacitated generalized transshipment problems solved includes the
capacitated and uncapacitated generalized transportation problems
and the continuous generalized assignment problem, as well as the
pure network flow models which are specializations of these

D R1" 17 EDITION OF' Io* NOV o65 2 056TRDD 1473 EIOUNCLASSIFIED
S/N 0102- LF- 014-6601 SECURITY CLAWPICATION OF TNIS PAGE (lMen Dete 3twe.e

- , ' .. v-S ; 'S. ,. :.% .; .. .,. -.. ,..---
. . * , ,~' 5 4 5 . ,5 ,-S,,. ,- ,. :,.''-.., . . ,,...',.

UNCLASSIFIED
8ECUMTY CLAIUiFCATION OF TI PA61S MM DO 8-

problems. These formulations are used for a large number of
diverse applications to determine how (or at what rate) flows
through the arcs of a network can minimize total shipment costs.
A generalized network problem can also be viewed as a linear
program with at most two non-zero entries in each column of the
constraint matrix; this property is exploited in the mathematical
presentation with special emphasis on data structures for basis
representation, basis manipulation, and pricing mechanisms. A
literature review accompanies computational testing of promising
ideas, and extensive experimentation is reported which has pro-
duced GENNET, an extremely efficient family of generalized
network systems.

S/N 0102-4.-014-6601

UNCLASSIFIED
SECURIITY CL.ASlSIFDICATION OF

r
THIS PAGI[h-w DOSg ftotmo

SOLVING GENERALIZED NETWORKS

by

Gerald G. brown
Naval Postgraduate School

Monterey, CA 93943 USA

and

Richard D. McBride
University of Southern California

Los Angeles, CA 90007 USA

(Rev 84.02.01)

(Copyright 1984)

? - g'~~', _ . ,€ £ 22 g¢ ,; , , : C : ''' .,--;'' '. ..''."_.. - , . .;."'' .,' ":."€)-",, ,"" _ , .N

A$STRACT

A complete, unified description is given ot the design,

implementation and use of a family ot very tast and etticient

large scale minimum-cost (primal simplex) network proyrams.

The class of capacitated generalized transshipment groblems

solved includes the capacitatea and uncapacitated generalized

transportation problems and the continuous generalized assign-

ment problem, as well as the pure network flow models which are

specializations of these problems. These formulations are used

for a large number of diverse applications to determine how (or

at what rate) flows through the arcs of a network can minimize

total shipment costs. A generalized network problem can also

be viewed as a linear program with at most two non-zero entries

in- each column ot the constraint matrix; this property is ex-

ploited in the mathematical presentation with special emphasis

on data structures for basis representation, basis manipulation,

and pricing mechanisms. A literature review accompanies compu-

tational testing of promising ideas, and extensive experimenta-

tion is reported which has produced GENNET, an extremely etti-

cient family of generalized network systems. <
_ : Accession For

" NTIS GRA&IDTICTI TAB
S ELECTE Justiiatio

ii Distribution/

Availability Codes

Avail and/or
SiDist Special

P * ~ ~ * *~d*~ ~ ?** ~ ~ * .*oil~

I. INTRUDUCTIUN

This. paper reports the development ot a large-scale primal

network code for solving capacitated generalized transshipment

problems. The capacitated generalized transshipment problem is

the most general of the minimum cost tlow models in continuous

'9 variables, which include the capacitated and uncapacitated trans-

portation problems and the continuous generalized assignment problem

as well as the pure network specializations ot these problems.

These models are used tor a large number ot diverse applications

that include transportation of goods, design ot reservoir, com-

munications, and pipeline systems, assignment ot personnel ano

machinery to jobs, bid evaluation; currency exchange and cash

management; production, sales and inventory planning; and many

others. For further discussion of these applications see survey

articles such as Bradley [51, or Glover et al., [17, 18], and

textbooks (as well as their cited reterences) such as Dantzig

[131, Jensen and Barnes [23], and Kennington and Helgason [27].

The capacitated generalized transshipment model and its

specializations are minimum-cost network flow problems. The

goal is to determine how (or at what rate) tlows through the

arcs ot a network can minimize shipment costs. The network is a

directed graph, U , detined by a set ot nodes, N , and a set ot

arcs, A , with ordered pairs ot nodes (tail, head) as elements

indexed by k: (tk'tk). For each arc there is a shippiny cost

per unit flow, ck , a minimum allowable tlow (or lower bound),

ik' and a maximum allowable tlow (or upper bound, or capacity),

u .
k

as.. : 5 '' '" V . *." " . , - ". . " _-" ." - '[9 V 'v '. ' .. '...>, ", .

-. , Vq . R -5 1 T .. -4 b .7 V..

In addition, there are coefficients (or multipliers, or gains,

or losses), ak and bk which can change the magnitude of (or

amplify, or attenuate) each unit of flow respectively entering

and leaving arc k . Each node is either a supply node where

units of the good enter the network, a demand node where units

leave, or a transshipment node. The problem is to minimize

total costs with flows, xk , that satisfy the associated lower

and upper bounds and preserve the conservation of flow at each

node:

(GN) MIN ckxk
kCA

s.t. bx + x £k'k = b. , i N N
_ kxk + k =kA

kcA kcA
with tk=i with tk=i

Ik t xk < uk k c A

where:

supply if i is a supply node;

bi =- demand it i is a demand node;

U otherwise.

Note that any linear program with at most two nonzero coetticients

* associated with each variable is a generalized network (GN). for-

mulation (GN) is a generalized transshipment model (GT) if all

are +1, in which case the corresponding coefficient is called the

multiplier mk = -b " For purposes of exposition, we will address

2

-... .

(UT) since assuming the existence of a finite upper bound on each

variable it is possible to transtorm the (GN) coetficients--by

scaling or by retlecting variables with respect to their upper

bounds--so that one coetticient is +1 for each variable. The other

coetticient for each variable then becomes the multiplier value,

Mk , and the generalized transshipment (GT) network tlow interpre-

tation results with a node tor each constraint and a directed arc

tor each variable. If a variable has two nonzero coetricients, its

arc is directed away from the node correspondiny to the constraint

with the +1 coefficient; a variable with just one nonzero coefficient

(±l) corresponds to an arc forming a self-cycle, leaving and

returning to the same node.

Some generalized networks (GN), such as those obtained by

relaxing integer restrictions on flow variables, cannot be scaled

conveniently to (GT). These (GN) are accommodated by obvious minor

modifications in the tollowing (GT) presentation. We have developed

codes for solving (GN) and specialized them for (GT) problems.

Generalized networks can be solved as linear programming

problems, but contemporary commercial linear programming sys-

tems consume much more computer time and data storage region

than special purpose network codes. Indeed, the advantage ot

network codes is so pronounced that it is even worthwhile to

develop special linear programming procedures to exploit intrin-

sic network structure found embedded within more general models

(e.g., Kenninyton and Helgason [27], McBride [3U], Brown and Graves

[8l, and Brown and McBride [91). brown and Wright [11] and brown,

McBride and Wood [10] show that many real-life linear programs

contain a large embedded generalized network structure.

. .. , 4 4 .~ ** . * . .*\% .%- - - - - -4, .4 *

These models are widely used because they accurately de-

scribe a large variety of important applications. Generalized

networks not only directly represent gains with m k > 1 (e.g.

interest return on investment, heat gain, etc.) and losses with

0 < mk < I (e.g., evaporation, voltage drop, attrition, etc.)

in the flows, but also admit conversions of units for these flows

(e.g., machine time to output pieces, lira to yen, etc.). In

addition, mk < 0 represents situations without obvious physical

flow interpretation (e.g., flows which "enter the head" of arc k

in proportion Mk of those entering the tail), but which nonethe-

less provide valuable modelling tools. There has been continuing

growth of interest in network models because efficient computer

programs have made possible the reliable, economic solution of

problems with more variables than virtually any other optimiza-

tion technique (e.g., the pure network system, GNET [6], has been

installed at hundreds of sites worldwide and is now cited as a

routine research tool). Perhaps most important, networks are

readily accepted by nonanalysts and are consequently extremely

popular operations research models.

Although several papers have been written in this general

area, and significant computational breakthroughs have been

reported, there has not previously been a single, unified de-

scription of a complete implementation, nor have "new generation"

computer programs been made generally available to the academic

community. Here we report the research and computational experi-

ments which have -roduc- GENNET, an extremely efficient tamily

of network optimizr.ion systems. GENNET exploits pure network

4

structure embedded in generalized networks, and specializes in-

trinsically to GNET [b], when both systems are applied to pure

networks, (the floating point arithmetic in) GENNET requires

about 15 percent more time than GNET. An important objective ot

this paper is to make these new approaches easily accessible to

a wide audience via a clear exposition and concrete examples of

efficient FORTRAN programs. Further, the availability ot the

(GT) and (GN) computer programs will now make it possible for

other investigators to reproduce and extend our experimental

results.

Bradley, Brown and Graves [b] trace the historical develop-

.. ments leading to contemporary primal simplex pure network alyo-

rithms, their supporting data structures, and erticient imple-

mentations such as GNET. For other sub-classes ot generalized

networks, algorithms have been reported by Jewell [251, Eisemann

[14], Maurras 1291, Glover, Hultz, Klingman and Stutz [17,1d,19],

Balachandran [21, and Jensen and Bhaumik [24]. An etficient

algorithm for large generalized network problems has been de-

veloped by Glover, Klingman, Hultz, Stutz, Karney and Elam

[15,17,18,21,221. However, their contributions are scattered

among the papers referenced; Kennington and Helgason [271 and

Jensen and Barnes [23] provide textbook descriptions of compu-

tations apparently gleaned from these papers, providing an ade-

quate treatment of the graphical algorithm with more computational

advice than the seminal presentation by Dantzig [13] but tew

details of etticient basis updating.

0

2. THE APPROACH

Our approach continues with generalized networks in pre-

cisely the philosophical vein of the pure network exposition

of Bradley, Brown and Graves: we seek data struct'ires and algo-

rithms that yield efficient implementations without abandoning

the flexibility of a general large-scale mathematical program-

ming perspective [6,p. 3 ff]. We introduce few of the details of

the general bounded-variable simplex algorithm, and we repeat

* ~little of the underlying pure network material; the assiduous

reader might well review the prior paper for which this is an

intimate companion.

We continue with a brief description of the algebraic

specialization of the simplex method for generalized networks.

Specific design decisions and experiments carried out with GENNET

are described, including computational tests ot alternate ap-

proaches. Some extensions of GENNET are presented to further

exploit special problem structure.

6

3. GENERALIZED NETWORK SPECIALIZATION

Efficient primal simplex specialization to the generalized

network case depends upon the well-known result that any

generalized network basis can be put in neirly (upper) tri-

angular form by simple permutation of rows and columns. This

inherent near triangularity can be exploited by direct solution

of the simplex equations with modified forward, or back substi-

tution. Fort?,itously, this basis structure also leads to ex-

tremely fast solution updates orchestrated in concert with

efficient dynamic reorganization of each new basis.

Theorem (e.., Dantzig [131) Any basis B extracted from a

generalized network problem can be put in the form (1) by

rearranging rows and columns.

B
2

£

B AI

where each square submatrix component 8 is either upper

triangular or nearly upper triangular with only one element

below the diagonal.

A"

-3. 039..w-1 FITW1 "-- "-- .'*-i. Ik 1. W> 7:7 -7 -1-

'N

Y

Proof. Our proof is constructive. We know that the basis has at

least one nonzero entry in each row, and one, or two,

entries in each column. Uefine a pairing as the associ-

ation of a row with a column sharing an entry in b , a

deferral as a temporary deletion ot a pai: trom consider-

ation, and an assignment as the fixing of a pair on the

diagonal in the ordering of the rearranged sequence,

followed by the assignment of all deterred pairs which

have a column with an entry in an assigned row.

step 1) Deter singleton rows. Locate a row with one entry, pair

the row with the column of the entry and defer the pair.

Repeat Step .1 until no row remains with one entry.

Comment: Step 1 reduces 8 to a submatrix with exactly two

entries in each row and in each column. To see this,

note that each column can have at most two entries, or

2m entries for m columns. Each row has at least two

entries. Suppose that some row has more than two

entries; then at least 2im + I entries exist, leading to

a contradiction. Thus, exactly 4m entries remain;

consequently, each column has exactly two entries, as

does each row.

Comment: Step 1 deters an upper triangular set of pairs. To

see this, diagonalize the pairs in reverse of the order

of their deferral, and place this sequence at the end

of the rearrangement of B

6#
Comment: A euneof assignments in terearrangement begins.

m8
-SV

Step 2) Assign a Component.

2.1) It a row remains which is neither assigned nor deterred,

begin a near trianyular component: pair the row and a

VP column and assign this pair next in the rearranged

sequence. utherwise, go to step 2.3.

2.2) Apply Step 1 and assign each newly deterred pair next in

the sequence. Go to Step 2.4.

2.3) Begin a triangular component: assign the most recently

deferred pair next in the sequence.

2.4) Repeat Step 2 until all rows and columns are assigned.

Comment: It Step 2.1 assigns a pair to a component, then the

component is nearly triangular with one element below

the diagonal in the first column. Otherwise, the

component is triangular.

Consider the generalized network problem given in b'igure 1,

a generalized transshipment problem with 2 sources, lU sinks,

15 nodes, and 3U arcs. We will use this problem to illustrate

concepts and etticient solution methods. in this problem the
04

multipliers are all positive. For arc k directed from node

i to node j , if flow xk leaves node i , then mrkxk

arrives at node j • When m > 1 the amount arriving at node

. j is greater than the amount leaving node i . This would be

the case in cash flow problems when the arc corresponds to an
.4
I investment and mk = (1 +) with rk the rate of return.

When mk < 1 then the amount arriving at node j is less than

the amount leaving node i . Here the loss could correspond to

~9

evaporation, taxation, transmission loss, brokeraye tees, seepage

or deterioration. Pure network arcs are indicated by Enk = 1

(and may be even more abundant in real problems than in our

example.). For clarity, minimum allowable flows are zero, and

maximum allowable flows are not specified.

Arc From To Cost Multiplier
k fk tk ck E

* 1 4 3 33.84 .99
Node Supply 2 2 3 15.47 1.0

3 1 5 53.54 .74
22.86 4 2 5 26.76 .74

2 177.14 5 3 5 73.49 1.00
6 5 5 52.52 1.00

Node Demand 7 3 6 35.12 .91
8 5 6 11.12 1.00

6 19.39 9 4 7 59.56 1.17
7 3.64 10 2 7 88.38 1.06
8 24.92 11 4 8 84.12 1.00
9 9.38 12 2 8 21.86 .92

10 14.07 13 4 9 3.46 1.00
11 56.91 14 3 9 29.72 1.00
12 2.45 15 4 10 6.12 1.00
13 30.93 16 2 10 31.08 .96
14 21.76 17 3 10 1.07 1.07
15 16.55 18 5 10 44.44 1.00

19 1 11 b7.15 .91
20 2 11 59.83 .79
21 3 11 5U.46 1.17
22 5 11 71.42 1.00
23 2 12 8.88 1.18
24 1 13 28.22 .83
25 4 13 77.34 1.00
26 3 13 45.60 1.00
27 5 13 20.67 .8d
28 4 14 37.76 1.13
29 2 14 I.16 .98
30 3 15 67.62 1.00

47

Figure 1. A Single Commodity Generalized Transshipment
Problem (GT)

IO "

.4 01..
.4

S 2 . Z i.%. *

¥ U ,, o * O- .o ° . d - ? . o • • , * F *. '.**. " . R *.

'

Figure 2 shows a basis for the problem introduced in

Figure 1. (In this simple case, there is only one component:

p - 1.)

A unique subgraph partition of G denoted G corre-

sponds to b Let A. = {a l a 3 is an arc associated with b

a column ot b) , then -B = [NAbJ denotes the directed graph

associated with the basis B . To each submatrix 8£ ot s

there corresponds a component ot GB denoted by GX = [N £ AI

N is the set ot nodes corresponding to the rows ot 8 and AI

is the set ot arcs corresponding to the columns ot B . It is

£
known (e.g., [13]) that G is either a rooted tree or a one-

tree (a tree with an additional arc forminy one cycle). It Gi

is a rooted tree, then B is upper triangular. If G is a

is a one-tree, then B is upper triangular except tor one

element below the diagonal. Each component can be viewed as

having one cycle if we assert that each rooted tree has a selt-

cycle corresponding to its root node.

In our example basis, the subgraph GB has only one com-

ponent, (one-tree) shown in k'igure 2: GB is a one-tree, with

nodes 2, 3 and 11 composing its cycle.

As in the pure network case, this near triangulation and

associated sub-graph are naturally represented by a predecessor

tunction p(), and a predecessor graph (which does not preserve

the orientation of arcs in the original network). The predeces-

sor tunction can be used iteratively to construct the unique

backkath from any node to the root (or cycle); the backpath

includes all nodes on the cycle. The immediate successors of a

4II

6 , ., ' , .. .'"- " , , ." . ."."".." '' ": ':,ff~ , " :[.[, - -, ,-2-,-1,

2 4 12 29 23 10 20 21 17 26 24 7 30 14 13

J 2 1 1 1 1 1 1

SS -.74

t -. 92

14 -. 90

" "12I -1.18

.- 1.06

11 I -. 79 -1.17

3 -1 1 1 111

10 -1.07
I I

13 10 83
1 --.------------

I

11 1

isi
I - .91

15S -1.0

I f-1.0 -2.0

4 L

A Preorder-Near-Triangulation

(The underlined coefficient is below the diagonal.)

Join

2 3

4.D

A

t _

One-Tree

Figure 2. A Generalized Transshipment Basis
(For the problem in Figure 1.)

12

S., -. ' .'''',._. . ._. .,......, ... , , . - . . . , , ,I -- , [,',,(? .,' , '. .. .". .-.. .' .,...-5 -: K~- .-§' .. *-... . . .

p.7

node, if any, are the first nodes encountered on all paths ex-

cept the backpath to the root, and all the nodes on these paths

are called successors.

Note that each basis may have many near triangulations.

However, all such near triangulations yield the same predecessor

function and graph (where the right to lett ordering of succes-

sors of any node is immaterial). Thus, the predecessor graph

does not completely represent a near triangulation without

additional information: an ordering of the rows (nodes). For

algebraic reasons, we restrict such partial ordering to preorder

16], in which a node i always precedes its successors, if any

and in which all its successors, if any, precede any node which

. does not precede node i

13

IM

4. IMPLEMENTATIUN

For didactic reasons, we begin by introducing a complete

primal generalized network algorithm using a preorder traversal

method. Controversial alternatives are deferred until this

paradigm is presented. Hereafter, notation with upper case

roman letters followed by parentheses indicates a program data

array. For instance, the predecessor array is referred to as

* P().

Static arc storage is used for tails T(), heads H(),

costs C(), multipliers MUL(), and capacities CP(). Contigu-

ous storage by tail, or by head node reduces T(), or H() to

an hierarchical node-length entry point array. (GENNET uses

contiguous storage by head node, as does GNET.) Lower bounds

on-arc flow are translated out prior to solution, with appropri-

ate adjustment of the initial right-hand side of (GT), and of

CP(). The sign bit of CP() is available to indicate arcs

nonbasic at their upper bounds (reflected with flow -CP()).

The predecessor function and its array P() are defined

so that the basic arcs in a cycle are oriented uniformly in a

directed cycle. All basic arcs not on a cycle are oriented so

that a backpath is created to a cycle. To obtain this orienta-

tion the direction of some arcs must be reversed, and the sign

*. bit o0 the predecessor array is used to indicate: if P(M) < 0,

*' then the orientation of arc (I, -P(I)) is reversea from its

original orientation.*

*This is the complement of the aiscipline used in GNET 16).

14

A depth array D() reveals for each node the number of

nodes on the backpath before encountering a cycle. Nodes on a

cycle have depth zero. Number of successors, or preorder

distance are acceptable substitutes tor depth [61, but are not

discussed here.

4 A preorder traversal array IT() is maintained so that all

preorder successors of a cycle node are encountered before

another cycle node. It is convenient to make this a circular

list for each near triangular basis component by setting IT()

of the last preorder node in the component equal to the first

preorder node in the component.

The components of G are not inter-connected, or equiva-

lently, the sub-matrices BI in (I) do not have common rows or

columns. Consequently, the p components of a basis may be

represented in a single set of node-length arrays.

The array X() contains the values of basic variables,

values of dual variables (or simplex multipliers, or node poten-

tials) are stored in U(), and IVAR() gives the location of

basic variables in the arc arrays. The array FAC() contains

the cycle factors, defined later. Figure 3 shows these arrays

I * for the basis given in Figure 2.

Generalized networks do not exhibit totally unimodular

bases. Consequently, floating point representation is required

for X(), U() and FAC(), and is desirable for arc-length arrays

C(), MUL(), and CP().

15
g % . %,. '. " -.. ' . ' "v

..

' - , ". . " .

Node Predecessor Depth Traversal basic Variable Dual Cycle Factor

P() D(IT() IVAR() X() U() FAC(

1 13 2 6 24 22.UbU lb.6b5 *

2 3 0 5 2 118.169 47.148 -. 48101

3 11 0 10 21 45.826 31.678 -. 48101

4 9 2 2 13 0.0 5.418 *

5 -2 1 8 4 0.0 27.552 *

6 -3 1 15 7 21.308 -3.782

7 -2 1 11 10 3.434 -38.898 *

8 -2 1 14 12 27.087 27.487
.421i 0 3.3 3.9

9 -3 1 4 14 9.380 1.958

10 -3 1 13 17 13.150 28.606

11 -2 0 3 20 4.170 -16.053 -. 48101

12 -2 1 7 23 2.076 32.431 *

13 -3 1 1 26 11.956 -13.922 *

14 -2 1 12 29 22.204 29.580 *

15 -3 1 9 30 16.550 -35.942 *

I[

lb

.4,

~ ,. *4.S **4~ ~ - V~ ~ ~ *..... **~ ~j . ~ ~... - ~ : . -; i

Step SI, Priceout

The reduced cost for nonbasic arc k , oriented from fk

to tk is (given the current dual solution u and column N):

rk = ck - uNk

C k - u f +m' Eu tck ~ k ktk

= Clk) - U(f k) + MUL(k)*U(tk)

(If CP(k) < 0, arc k is reflected and the sign of rk is

reversed.) At most, one multiplication, addition and subtrac-

tion are required. Note that the multiplication is unneccessary

if I!mkl = 1; further specialization is possible for sets of

priced arcs with common attributes. If arc k is a logical arc

(slack, artificial, or surplus variable) then C(k) can be

logically generated, rather than explicitly stored, and

rk C(k) ±(f k

depending upon the sign of P(fk

From the example,

r27 = C(z7) - U(S) + MUL(27)*U(13)

= 20.67 - (27.552) + .88(-13.922)

= -19.133

17

* •' h ' * °q . b . i ,,

This variable will be used as the entering non-basic variable

for further illustration.

Step 82, Ratio Test

For the determination of the arc to leave the basis the

system of equations

BZ k = Nk,

must be solved for the transformed column Z . (-Nk is

used if arc k is reflected.) Due to the near triangularity

of B , this incoming column transformation can be combined

with the ratio test in a single integrated process.

Suppose that N k has two nonzero coefficients representing

an arc oriented from fk to tk , and that the arc is not

reflected. An apparent complication arises if fk and tk are

in separate components of B in (1), say b s and B t , respec-

tively. In this case two disjoint subsystems must be solved and

k
the results added to determine the nonzero elements in Z

The subsystems are:

s Q f k e and
f

s k =-Elke
*t1 t = -me k ,n

~tk

18

4'. * * f % " -~ q, .° .* - . *" - ."% * . 9 ,

fi fk t k

(etk is the tkth unit vector; Q and Q are disjoint
Lk k

components of Z .)
-This complication is inconsequential. In order to see

this, consider solving one of the systems:

, tQ =

w.V "tk

The only nonzero elements of Q will be those that correspond

to the nodes in the backpath from node tk . As we shall see,

this follows from the manner in which the coefficient -ak in

row tk propagates during substitution solution.

Suppose that G is a rooted tree. The backpath from noae

tk can be denoted by iteration of the predecessor tunction: tk'

p(tk), P(P(tk)H.., root; this sequence is shown below as d,
.4 d-l,...,U, analogous to the backpath length remaining to the root.

a U
44 Root

-p

P(P~tka d-2
b 1

p(p(tk)) abdl

bda d

19

NN

,,'": ,3;: ,-.: . ,,,o :..... , 4 v .-. " "; '..'€ ,: '.: ''',.".. .: ".. -"." ' - . . - -.,. .
? ••• . • • • . . " I" ' " : i ; " % % ,", "..''" '' ''% '-.,.

.- ,

The values of a and b for each basic arc depend upon the

original orientation of the arc, given by the sign of P().

For original orientation, P() > 0 implies that a = +1 and b

is the multiplier value, P() U 0 reverses these definitions.

The triangular system corresponding to this backpath is:

a0 b1 U

a: I 0

,,T. .. tk _

Sad- 2 b d-l U

ad-l bd U

ad -m k
• -k

WI U

By back substitution, its solution is:

Mk

= 6 11 6 +1 for 6 = d-1,...,O

a6

Now suppose that Gt is a one-tree. Let node t be on thek

cycle. The backpath is tk , p(tk) ' P(p(tk)), ... , c, with

p(c) = tk and length p ; this sequence is shown below as

-l,-2,...,-p, analogous to the backpath length beyond the cycle

start.

20

=o. -........................ * o . •vI'*. . ~ ~ *7

- Cp(p(j)) P(j)

.a _a+ _1- - a.
b 1 a 9

2 a ia D

The corresponding near triangular system is:

a b_ 0

-P -P+l
"a_p+, Utk

a 3 b_ 2 0

a_2 b 1 0

b _- a 1 -M

5. 0

By modified back substitution, its solution is:

--- b

52-

!!!k I

'5-b

-b8 6 1 q6 +' for 6

- where

Sf-i -p -a

21

J,|

The cycle factor (or loop cactor [131), f , is common to all

nodes in the cycle and can be computed when the cycle is

created and stored in FAC() for all nodes on the cycle so

that it is immediately available at this step.

Suppose that the entering arc is (fk,tk) with coefficient

entries (ak bk) and that the fk and tk backpathe converge.

Using nomenclature for the backpath sequences introduced above,

the corresponding system is:

a0 b I U

a1

join a£_l bk bw br
a k

• tk
aw -

ad_ 1 bd 0

ad ak

0
a *r

ad I bd U

ad bk

U

22

" "o* e ,,° . 'o". l " " • " " " ° ' " " . . .

by back substitution, its solution is:

bk

k : ' (d begins tk backpath sequence),
- d

-b for 6 = d,d-1,...,r ,

a 6

= ' (a begins tk backpath sequence)

"6b6+lq6+ for 6 = d,d-l,...,w r

a 6

-(bwq w + brq r)

qX-l a 1-

w-b 6+6+1

q6 -b6 ~1 q6 1~ tor 6 =q- q6 = a 6

Suppose that entering arc (fkltk) with coetticients

(ak bk) enters and that the backpaths converge on a cycle. The

corresponding system is:

.3
.

,,.

23

4.

ap b- 0

b w

1b b

a-2 b 1-

a b
w v+1

a dI b 0

adak

0

r r+1

a a db

* 0

42

- -. -- ~ ~ ~ 43 -.p 6*~p~. --- . ~

S.

by modified back substitution, its solution is:

-b k
qd_= ad (d begins tk backjpath sequence)

for 6 d,d-l,...,r,

a6 b-

-bq

q~~ = a 1
1 ,

-b6+1 q6 +l for 6 =-s-2,...,L,-L-,...,-s,
6 6

= - (d begins t backpath sequence)
d d k kptseun)

t or 6 d... ,w .

S" = 6+ for 6 -£-2,...,-p,-l,...,-S,...,-Lq6 a
-ab q = 6 +1 q6+ for 6 l..-

.

: 25

I..- V1 -77

For the cycle in Figure 2,

-(-I) -(l) -(ix
f Z-.79

= -. 481U1

By now it should be apparent that one composite back sub-

stitution scheme will suffice for all cases. The cycle factor

is applied once when, and if, a cycle is encountered on a

backpath.

If the backpaths of fk and tk converge, let 4oin be the

first node on the tk backpath that is also on the f k backpath.

If the backpaths converge on a cycle and it the leaving arc pre-

ceeds the ioin on the fk backpath, define join as the first

cycle node encontered on the f k backpath. If the backpaths do

not converge, 1jin = t .

several schemes are available for identifying the join

efficiently [6. The depth (or number of successors, or pre-

order distance) of nodes on the backpaths can be used to avoid

iterating either backpath past the join. Depth, the number of

nodes on the backpath until a cycle is encountered, can be used

to indicate which backpath node is deeper and should be iterated.

When both backpath nodes have matching depths, zero depths indi-

cate that each backpath is on a root cycle. By remembering the

first root cycle node on each backpath, further iteration will

either reveal the root cycles to be distinct with join - 0 , or

coincident with join defined as above. When both backpath nodes

have matching depths greater than zero, the nodes are compared for

26
.'4

j'A'

• -

equality. A match indicates the join, and a mismatch indicates

that both backpaths should be iterated for another comparison.

If a join is encountered, the backpaths have merged and

either one can be used to complete the ratio test (GENNET

continues the tk backpath). When a cycle is encountered the

q values are computed on the first pass around the cycle. on

;: the second pass around the cycle the q values are computed and

the ratio test is completed.

As the backpaths are iterated, the column transformation*54

N is applied and the resulting terms of transformed column, Z

are used in the ratio test, seeking the minimum ratio:

lira"

-. CP(k) the capacity of the incoming arc,

MIN X(X) for zk > 0, node X,

k

CP(IVAR(X))-X(Y) k <0
k X

- z£

If a zero ratio is encountered during this process, the ratio

test may be preemptively terminated.

Step S3, Pivot

IF CP(k) is selected as the minimum ratio, then the enter-

ing variable remains nonbasic and is reflected to its opposite

bound. Only the flows X() need be updated. To do this, the

backpaths are iterated again and for each node Z encountered,
kX() is reduced by zk x C?(k)

..

27

- .. a- " ".-- -. " -*. . . -. -- . .s a '" L . , .

If a basis exchange is required, an efficient update of

the basis representation must preserve the rooted cycle orien-

tation, updating some entries in P() and D(). Also, some

flows X(), and some dual variables U(), must be changed.

FAC() must be established for nodes on newly created cycles.

Some bookkeeping in IVAR() and CP() may also be required.

The apparent intricacy of our task is deceiving. Careful

analysis yields an elegant solution. However, the supporting

arguments require close attention.

To simplify the explanation, reorient the incoming arc

La. (fk,tk) to (i,j) or (j,i) (if necessary) so that the minimum

ratio is on the j backpath. Let the entering arc (i,j) have

the outgoing arc (c,d) on its j-backpath. Also, reorient the

outgoing arc (tf necessary) so that the first node encountered

on the j backpath is c . Figure 2 shows a case for which

both reorientations are necessary.

In our example, arc 20, oriented from node 2 to node 11,

• . leaves thq basis and arc 27, oriented from node 5 to node 13

enters. We call the backpath segment from j to arc (c,d) the

j-stem. In Figure 2, i, j, c, and d are shown. The j-stem is

composed of nodes 5, 2, 3, and ii. The skeletal update:

a. Reverses the orientation of arcs within the

j-stem; and

b. Orients the entering arc so that it precedes this

redirected path with the same orientation.
k4

If the i and 3 backpaths merge, the node where they

merge is called the join. The join is node 3 in b'igure 2.

28
6."

' -. -~~ -~ ~ Z!.Ob .!R~a .a~.. .%* aa .. ~ -'

U--

If the leaving arc lies beyond the join on the backpaths

a new cycle is created in the basis exchange. In this case

the portion of the i backpath from node i to the node with

U the join as its predecessor is called the i-stem. When node i

is on the j backpath the i-stem is null. In Figure 2, the

i-stem is node 13.

Figure 4 displays the pivot logic to be applied. The

* algorithm visits each node affected by the basis update

exactly once. It proceeds up the j-stem one node at a time

visiting the preorder successors of each stem node via IT().

If a join is encountered it switches to proceed up the i-stem

one node at a time and then returns to the j-stem. At each

j-stem node, the successors of the next lower stem node have

already been visited. The unvisited successors of the current

stem node can be divided into two groups: the left successors

are the nodes visited in preorder by iterating IT() from the

current stem node until the next lower stem node is encountered,

and the right successors of the stem node are the remaining

unvisited nodes reached by further iteration of IT(). In Figure

2, nodes 8, 14, 12, and 7 are right successors of node 2 and

nodes IU, 13, 1, 6, 15, 9, and 4 are left successors of node 3.

As we climb the i-stem the traversal IT() is moditied so that

the last of the left successors (if any) points to the first of

the right successors and the last of the right successors (if

any) points to the previous stem node. As we climb the j-stem,

the traversal is modified so that the last of the left succes-

sors (if any) points to the first of the right successors and

29

, * p S~a V - . ° ~

C D

et first
* 3-ate. node
* to visit.

VisitVsi uIL ucso

last~J-te ofnodeacnsr

poita ton fis of

morn pints ejkit

I-s-ste no n

unvii~ed I-tan n o untri

left s ccesso s.yye

no Use preorder link to

* s kip previously visited

Visit lefto acnorsccos

4An

SFigure 4.oes Pivo Tra esucese

regain
%"remains

?

the last of the right successors (if any) points to the next

node up the stem (because the update reverses predecessor

orientation for the j-stem).

The immediate switch to the i-stem upon encountering the

join during the j-stem iteration is motivated by a subtle

complication: while visiting the left and right successors

of the j-stem nodes, the nodes on the i-stem and their succes-

ors must be skipped if encountered. Because the i-stem nodes

are successors of the join, visiting the i-stem as soon as the

4 join is encountered (if one exists) on the j-stem leaves us

with the preorder successor of the last i-stem node visited.

This valuable artifact enables the subsequent j-stem iteration

to immediately skip all i-stem nodes and their successors should

they be encountered. This is the key step preserving an effi-

cient one-pass basis update. In Figure 2, i-stem node 13 and

" its successor node 1 are successors of the join, node 3. The

% preorder successor of the last i-stem node (called the preorder

link in Figure 4) is node b.

A stem node may have a right successor which is on the

root cycle (with depth zero). The preorder traversal array is

organized so that all successors of a cycle node are encountered

before the next cycle node. This implies that a cycle being

broken by a leaving arc will always be encountered as a right

successor of a stem node. In Figure 2, the broken cycle is

encountered as a right successor of node 2; if arc (2,11) were

not the leaving arc, then node 11 would be a preorder successor

of node 2.

31

. .. 1%. *_.

The basic arc flows, X(), are changed as each arc is

visited on the j-stem, and (if a new cycle is created) on the

i-stem. If no cycle is created, X() is changed only it the

minimum ratio is nonzero, and then only on the arcs visited on

the backpaths.

During the update, the dual variables must be changed so

that

ck Uf mk ,=Uk uk

for every basic arc k oriented from node tk to node fk

With incoming arc (i,j) (reoriented as in Figure 2 so that the

outgoing arc is on the j-stem), this relationship is retained

for all nodes except for those which the update changes to be

successors of i: (i.e. the nodes on the j-stem and their

successors).

If a cycle is not created, this update proceeds for each

j-stem node and its successors as these nodes are visited in

preorder. For node s , and associated basic arc £ oriented

from s to p(s),

U(s) = C(£) + MUL(£) * U(P(s))

while the reverse orientation -P(s) to s yields

U(s) = (C(t) -U(- (s)))/(-MUL(X))

32

4IN

As in pure networks, the preorder traversal assures that a value

of the dual variable of a predecessor node is always determined

prior to its use by any immediate successor nodes.

When a cycle is created, the dual var. able must be deter-

mined for one of the cycle nodes. Then, the dual variables of

the remaining cycle nodes and their descendents can be found

one at a time in preorder traversal.

This key dual variable is computed immediately after the

ratio test predicts creation of a new cycle (the leaving arc

lies beyond the join on the ratio backpaths). Consider the

current context for a new cycle:

Join

'%'

from which the new cycle will be formed (with modified pre-

decessor function p()):

/

C aLp p(p(j)) p (j) -

-& 2 a l ai. k

33

-- -- ----,- -l un mln unn l l.. ' , - "I """ ""•
a".

.The corresponding near-triangular system is:

a b_
-p-p+l

(U p U o l . . U lS . = (C ~ p C ~ + i ... c 1)
_ b_2

a_ 2 b_
b b_p a_

, where the indexing of c is understood to yield basis arc

costs (accomplished by indexing with IVAR()).

The determination of one term (say, ul) of the solution

of this system is induced by modified forward substitution to

be (e.g., Il]):

1
U_ Us

- = - 1 t '

-' where (the cycle factor) f is defined (again) as

-. p -b

f = - -
6=-i a6

and u" is the corresponding term of the solution of the strictly

upper triangular system (omitting the cyclic coefficient b_,
aft -p

and using forward substitution):

5%3

%34

' -•... 5. 5' .

C
U OP = P

- -p-p ap

"~~C6 -b u -',

u a6 for 6 =
6a 6

Note that computation of u'1 requires that we traverse the

new cycle in a direction opposite to its predecessor orientation.

However, before the update creating the new cycle, the j-stem

exhibits proper orientation for at least part of our work. Thus,

we can complete the first portion of the forward substitution

for u"1 and accumulate the associated partial product component

of f while iterating the j-stem before the update.

The remainder of the new cycle is accessed by iterating

the i-stem. As we proceed up the i-stem the remaining product

terms of f are accumulated, and the reverse i-stem path is

stored (e.g., using U() locations, which contain obsolete dual

values to be replaced during the imminent update). Reaching

the join, this stored reverse i-stem path is then accessed to

complete computation of u'-1

The newly created cycle in Figure 5 is composed of j-stem

nodes 5, 2, and 3, and i-stem node 13. The dual system becomes

-u13 + u3 = 45.60

-u 3 + u = 15.47

u2 - .74u = 26.76
2 5

-.88u 1 3 + u5 = 20.67 ,

35

P A .0- * ." =r ,% % ' ' ' . . ''' " ' " - -, f""%"""", .'='b .'" .".".' -J . , ' '-.".'-.",','" . . ".S. -. '. '"

which yields

u 3 =-19.0142,

f = 0.3488 (the new cycle factor), and

u = -54.5132 (the new dual for node 13).

Thus, when a new cycle is to be formed, the new cycle nodes

must be visited once (after the ratio test and prior to the

pivotal update).

The one-pass preorder traversal update can now proceed as

presented in Figure 4. The basis representation arrays are all

modified on-the-fly during this traversal. The update of nodes

on a newly created cycle (if any) includes establishing the new

cycle factor FAC(). Changes for P(), D(), IT(), IVAR(),

X(), and U() proceed analogously to the pure network case

(e.g., GNET [61) with simple modification of generators for X(

and U() to accommodate generalized network coefficients for

basic arcs.

Figure 5 shows the new basis (derived from the example in
5, S.

Figure 2) before restoring near-triangulation with the update.

A new cycle is to be created and the new cycle factor and a dual

solution (for node 13 on the i-stem) are found at this stage.

Figure 6 displays the new basis restored to near-triangular

form. At this point, all basis representation arrays are updated

with the values shown in Figure 7 (data in italics has been

changed by the update).

36

.. *.*S.

7y. 1- - - 1 ;77777 .7 7, _

low
II 2 12 1S Ij3 10 1 1 6 4 7 3 4

5 -. 74 1
4 2

12 -1, . ,I ,

------------------------ -- ---------------------------------- ------ -- -------------- -----------------------

7 1-1.06

11 -1.17

3-1 3 11 1 1
- I

10 * -1.07

10

_,SS

13
- --.-1 -. 1-- - I ------------ ------- ---- - - ------------- t --------- "I " - N- I

.4.0 I
15 -1.0*s I

9! I 1
9 1 I -10 1

44

(The entering column is itaticized)

d. . Join

4 12 7 10 13 6 15 9

One-Tree

Figure 5. New Basis Before Restoring Near-Triangulation

(entering column 27, arc (5,13))

37

t',o % ",f' .w ' .? ',,, ',x ;'._. ;. ., , _ . .,. . .. ': .-; , . i .v :; : :' : ::.:

Column

4 12 29 23 10 2 17 7 30 14 13 21 26 24 27

2 1 I 1 2
3i

o -.92 I
I

14 -. 98

12 -1.18 I

.1 -1.06 a
--- ----------- --- --------- I --------------- --------

a [-1.0 1 1 1 1

10 I -1.07

6 1-.9t1i
I I

1 ,-1.0 I

• I '-1.0 1 - 1 . 0

13 .-. -.0-3-}80SI -

5!

A ProdrNa-raglto

'II

Aig reord er a Near-Triangulat

13 8

.4: S1 - 4

One-Tree

Figure 6. New Basis Near-Triangulated

38

C..

, ". " ". • • "- • • '. ". •". -" - .t, ' ' C-,•,,',-. . . ** " .',, ,... .* , I -" ,,.

.Xq

GENNET is designed to exploit intrinsic pure network struc-

ture commonly found embedded in generalized network problems.

Note that when this algorithm is applied to pure network prob-

lems, it automatically adapts to a minor variant of GNET. Of

course, GENNET uses floating point arithmetic operations which

sare intrinsically slower on most computers than the pure additive

integer arithmetic of GNET (also, floating point arithmetic

requires some extra editing for mantissa truncation errors).

To mitigate this disadvantage, GENNET can test logically for

pure network arcs (with unit multipliers) and avoid unnecessary

floating point multiplication and division operations.

GENNET also employs an automatic dual basis aggregation

refinement ([6 1,p. 2 6 ff). Explicit values for U(), U() and

IT() are maintained only for nodes with successors. An array,

A(), records for each node the current number ot its aggregated

successors. When an aggregated node is encountered in the

priceout, its dual is generated from that of the immediate

predecessor of the node. When a backpath ot an entering arc

begins with an aggregated node, it is disaggreyated, and when the

leaving arc isolates nodes with no successors, they are

aggregated.

Figure 8 shows the arrays affected by the dual aggregation

scheme for the basis in Figures 2 and 3. IT() indicates aggre-

gated nodes with 0 entries, and these nodes have broken outlines

in the one-tree depiction. The priceout of arc (5,13) requires

that U(5) be generated using the predecessor dual U(2). Node 5

subsequently starts the j-backpath and is disaggregated. The

update leaves node 11 with no successors, and thus aggregated.

39

Node Predecessor Depth Traversal Basic Variable Dual Cycle Factor

P() D() IT() IVAR() X() U() FAC(

13 1 5 24 22.860 -17.026 *

2 5 0 8 4 3.883 6.557 0.3488

3 -2 0 10 2 118.456 -8.913 0.3488

4 9 2 11 13 0.0 -35.173 *

5 13 0 2 27 2.872 -27.302 0.3488

6 -3 1 15 7 21.308 -48.388 *

7 -2 1 3 10 3.434 -77.192 *

8 -2 1 14 12 27.087 -16.634

9 -3 1 4 14 9.380 -38.633 *

10 -3 1 6 17 13.150 - 9.330 *

11 -3 1 13 21 48.641 -50.746 *

12 -2 1 7 23 2.076 -1.969 *

13 -3 0 1 26 9.428 -54.513 0.3488

14 -2 1 12 29 22.204 -11.834 *

15 -3 1 9 20 16.550 -76.533 *

Figure 7. GENNET Basis Representation Arrays
(for Basis in Figure 5)

040

Aggregated
Node Depth Traversal Dual Successors

D(IT() U(A(

. 10 o
2 0 3 47.148 5

3 U 13 31.678 3

4 (U

0 U

b U U

7 0 U

8 0 U

9 1 11 9.380 1

10 0 u

.11 0 2 4.170 U

12 0 0

13 1 9 11.956 1

14 0 0
15 0 0

5 .13

-- J.

~Aggregated one-Tree, ,

. I % *. . , I % I/

Figure 8. Aggregated Basis Representation

(for Figures 2 and 3)

41

S. IN -(m * - k :. > ;' i - - ~ n ,, -;* *-% 5 .s S %.' \s:'S :S: -*V|

*4

,. COMPUTATIONAL EXPERIENCE

Significant design alternatives for GENNET have each been

evaluated by extensive experimentation at large scale. Illus-

trative computational experience is abstracted in this section

for some of the prototype systems tested. Departing somewhat

from the style of the paper documenting such work for GNET [b],

relative performance is reported even tor some competitive design

features subsequently rejected for adoption (some readers ot (b]

have concluded, quite incorrectly, that only those teatures

reported for GNET were tested). This should help other re-

searchers avoid our mistakes, and may even change some widely

held misconceptions and correct a few translation errors in

textbooks.

Among the key isspes to be resolved are:

a) Static Storage of Arcs. The arc lists can be stored

in arbitrary sequence, or, to save space, arcs can

be stored contiguously by tail node, or by head

node, thereby replacing an arc-length index array by

a (presumably much shorter) hierarchical node-length

entry point array.

b) Preorder Manipulation of basis. The triple label (aug-

mented predecessor index) method t2U,221 will be

presented and compared with the preorder traversal

method.

c) basis Aggregation. An aggregated basis representation

will compete with an explicit representation.

42

d) Pricing Schemes. Candidate list schemes and explicit

arc pricing mechanisms widely used in general linear

programming systems will vie with dynamic candidate

queue disciplines.

e) Pure Network Specialization. Generalized network

algorithms would ideally adapt to pure networks with

efficiency comparable to pure network codes.

f) StartinQ, Tunin and Tailoring. Which algorithm

parameters and settings lead to high efticiency for

interesting classes ot problems? Are heuristics tor

advanced starting solutions worthwhile?

g) Generalizations. Advanced teatures and generalizations

will be suggested.

Computational tests have been made with many problems,

including a benchmark suite ot pure network problems yenerated

with NETGEN [281, and generalized network problems generated

by NeTGENG [17,181. Figure 9 gives some problem characteristics.

Static arc storage has been implemented in three ways:

• Contiguous by head node with hierarchical node-

length entry point array,

0 Contiguous by tail node, with hierarchical node-

length entry point array, and

• Explicit arcs in arbitrary order.

In competition with our basis manipulation using preorder

traversal, a triple label representation originally suggested

by b. Johnson [2bJ has been implemented tor pure networks and

called the augmented predecessor indexing method by Glover,

Karney, and Klinman L2uj. Glover, Klingman and Stutz [22J

43
0,

Percent

Problem Nodes bources Sinks Arcs Capacitated

NETGEN (Pure)

NG15 40U 200 200 4,500 U

NGIS 400 8 60 1,306 2u

NG19 400 8 bo 2,443 20

NG22 400 8 60 1,416 4U

NG23 400 8 bO 2,83b 40

NU26 400 4 12 1,:382 B0

NG27* 400 4 12 2,b76 b0

NG28 1,000 !50 !U 2,900 U

NG29 1,000 !)U 5U :3,400 0

NG3O 1,000 50 50 4,400 0

NG31 1,000 so !)U 4,800 u

1,5200bu 75 75 4,342 u

biG33 1,!500 75 75 4,385 0

*4~4NG34 1,500 75 75 5),107 u

NG35 1,500 75 75 5,73U 0

NETGENG (Generalized)

GTO1 200 100 100 1,500 0

GT02 200 100 100 2,000 100

GTU7 :300 135 115 4,000 0

GTI2 400 20 100 5,000 0

GTIS 1,000 995 4,000 100

GTIb 1,000 20u 100 b,UUU 100

1,000'uu 30 400 7,000 0

UTI(Proble N.b627~ is extensively studiedl in [6J.)

- ~ ~44

L .d % * . 7. -.

report that the method has been extended to generalized networks,

but reveal no details.

We have implemented our own etticient version of the triple

l label scheme.

The triple label representation uses preaecessor, successor,

and brother pointers for each node. Figure IU shows these arrays

for the basis in Figure 2.

To briefly illustrate the triple label scheme for gener-

alized networks, let our situation be the same as tor the pre-

order example (the j-backpath of the incoming arc is arranyea

to include the outgoing arc and to encounter node c first on

that backpath). Let

vd+l

and the backpath from j to c

Vd, Vdl, C

The skeletal update scheme is:

k.

I4

~45

. -, ' '. -h--. ;,.. .,

Node Predecessor buccessor brother

P(()(

1 13 U U

2 3 11 10

3 11 2 0

4 9 U O

5 -2 0 8

6 -3 U 15

7 -2 U U

8 -2 U 14

9 -3 4 U

II -3 U 13

5. ~11 -

12 -2 U 7

13 -3 1 b

14 -2 U Iz

15 -3 U 9

€e. Figure 1U. Triple Label Basis Representation
(for Figure 2)

"S46

5.
;,"-'"5"."-"-"-"%"""v . , . -", .- "''-"v -"-"."-"v "....,....., .."..-.v,. .- ',., ,., , , ,

.1,

I. Set 6 = d

2. It S(v6, I) = v6 , Go to Step 3

Otherwise, if possible, find a node v*

such that P(v*) = v,_ 1

and B(v*) =v

and set B(v*) + 8(v 6), Go to Step 4

3. Set s(v 6 + 8(v 6),

4. Set P(V + v

B(v6) + S(v6 +l),

S(v6 +1) + v6i

5. Set 6 + 6-1,

Then, it v *1 * C, Go to Ste 2,

Otherwise, Stop.

(stiep 2 exhibits the key extension tor generalized networks of

the pure network triple label scheme.)

These five steps reverse the orientation ot all arcs on

the j-stem and orient (vd+lvd) so that it begins this redirected

path. All other triple label operations are obvious alterations

of the preorder traversal procedure.

A static candidate list pricing strategy (e.g., [17,1d,31]))

an explicit arc pricing method reminiscent of general linear

programminy systems, and a dynamic candidate queue [b] have been

tested.

The (L1,L) candidate list procedure is a simple strategy.

Nodes with leaving arcs (or entering arcs for contiguous head

node arc lists) are sequentially priced, placing the most nega-

tive candidate (it any) trom each node on the candidate list

47

until L 2 candidates have been located (arbitrarily organized arc

lists require explicit arc pricing). Entering arcs are chosen

from the candidate list by most negative reduced cost until L

iterations have been carried out, or until all list entries have

non-negative reduced costs. Arcs with non-negative reduced costs

are dropped from the list and replaced by continuing to scan the

nodes until candidates have been tound. It an exhaustive pass

through the nodes results in less than L2 candidates, then an

optional closing gambit sets L2 equal to the actual candidates

found, and reduces L1 by halt unless L1 equals one. Glover,

Hultz, Klingman and Stutz [17,181 report (LIL 2) of (b,lU) to be

best in their work,

The candidate queue is a dynamic list of interesting arcs

and nodes, scanned in 4 cyclic manner. The entering arc is

selecteo from the queue by pricing NNE entries; if an interesting

nodo is encountered it is replaced by its best-priced entering

arc (or leaving arc for contiguous tail node arc lists). Arcs

pricing favorably are retained in the queue. When the end of

queue is encountered, the queue is refreshed by pricing IPG nodes

in a cysclic general arc scan. During an opening gambit of NNb

pivots, the nodes incident to the entering basic arc are adoed to

the queue. There is no closing gambit, since the queue automa-

tically shrinks and finally collapses at optimality. Bradley,

brown, and Graves [6J suggest NNE = 32, NNS = 3m/4 and

IPG = m/l0 + I for pure network problems with m nodes.

A rule to break ties in the ratio test which guarantees

* finite convergence for pure transshipment problems has been

48

developed by Cunningham [121. Bradley, brown and Graves [6]

show that the conditions necessary for finite convergence are

naturally satisfied by GNET on over 90% of its degenerate pivots.

Elam, Glover and Klingman [151 have observed that the results ot

Cunningham can only be extended to the generalized network case

when the multipliers are positive. We have not used Cunningham's

modification.

bland [41 presents a class of restrictions of pricing and

ratio tests for general linear programs which relies exclusively

.4 on primal simplex representation and guarantees finite conver-

gence. These rules are easily modified to produce an efficient

finite simplex algorithm. The modification interferes with et-

fective pricing strategies only during degenerate pivot sequences,

and the restrictions increase in severity only with the number of

pivots in that sequence. However, during a degenerate pivot se-

quence restriction records must be accumulated (e.g., a list with

each incoming variable in one ot our schemes). This record is

naturally accommodated by the dynamic candidate queue, but not by

a static candidate list or explicit pricing. No purpose is

served by reporting such unbalanced competition.

A starting strategy has also been tested in conjunction with

pricing alternatives. A straightforward starting method ex-

amines each node with supply (or demand for contiguous arc stor-

age by head node) and assigns as much flow as possible to its

least cost leaving (entering) arc. The procedure stops when an

exhaustive pass of the nodes makes no additional flow assignments.

49

The starting solution achieved is not necessarily feasible.

(E.g., "exhaustive pass sequential source minimum start" [18].)

Artificial arcs are driven from the basis in all experiments

using a big-M method (e.g., [61). This choice is principally

motivated by the comparability of competitive tests between pure

and generalized network codes on pure and generalized network

problems. (A two-phase method is employed in production use.)

Choosing the best L iy-M value is a bit tricky. The smallest

big-M value which yields a feasible optimal solution (it one

* exists) is best in our experience. bmall big-M values may tail

to produce feasibility, and large values inflict numerical

ditticulties. In practice, a detault value is used and an

automatic restart recovery is applied it an infeasible solution

persists. If a restart with a higher l8ig-M value tails to

reduce the total infeasibility, a terminally infeasible solution

is declared. Figures 11 and 12 indicate the multiple ot maximum

absolute arc cost used for big-M in each problem.

Computational tests have been performed on various computer

systems. The times reported here are accurate to the precision

displayed for IBM 37U/1bd-3 using the FORTRAN H compiler with

UPT(2). Solution times exclude input/output overhead. UENNET

uses coublq precision (16M REAL*8) arithmetic for floating point

operations and storage.

Solution times are given in Figure II for the pure network

test problems. Pertormance is yiven tor three pure network codes

(two versions ot UN.T and SUPERK) as well as for several repre-

sentative generalized network prototype systems. we can thus

50

v * ..- ' .. ,... *...

-- - -.- o O-.W.o. . .. ° ,J S h ,.• . o . .**

compare the best generalized network scheme with the best pure

network code exhibiting equivalent features (GNET, or its

aggregated successor variant [61).

The times for SUPERK also provide the only available objec-

tive means tor comparison of our implementations to that ot

Glover, Hultz, Klingman and Stutz [14]; they report that their

generalized network code, NETG, is about as tast as SUPERK (a

fast out-of-kilter code for pure networks [3j) when both are used

to solve pure networks. Using their version of SUPERK on our

computer we have shown that our implementation of NETG (called

TLA in our nomenclature) is at least as efficient as their claims

-. for NETG.

51

i:

U, L 0 40 4v 1- N 30r- .N n v N1r

m en L -4 CsN -4 4n " J V - 4m 0 M ~

0 .

~~~~~ N1 -4 W f ( V A N L

-~i - - - - --~ - - - .- - N N w

Z .0r- ~ ~ ~ ~ ~ ~ ~ - to -4 v 4 44 I~ o- - t

a)E44 W

OD* #ko - n O r- Ln 0 N N m N -4 0 Q

z x 0
J C

-1 0o 4J.ia

.4-4 4) 0 a l W
to0 -1a) 4)

wI .4 010- L4 .4 4 L O (aN 0 1-4 to :3z (D 3-4fl1 )

* .- 4 OS-4

-4 4:0 4

.-4 a)4~'

. 01 0'

Zj N ).4

z co LA 6 ze LAe 04 -N40 "Nn M;4 V 0 ,n

-4-

4)CN

oZ nI m- 0 0r N M LA r- w m -4 N n (

A z4 q N N N N N N M4 *) n -0

9. z zzz

'az

"p52



-.1

(7 r- %r Ln LA LA LA

-l co .4 -44a

~zI

11 0 0 - N N 4 1 0a

N lI N >- L

z I C4 m -

Z 0 '

41 N 0 0 0
14 ("- N A 4 m ' r"' 4N LA ON rz (1-4

(o 1 0 4 3 'n w U)

II ( v ~ ' ) c
4. 0 3'--

2 -4 4Li C- L

m0' a)4 OD r4 0 * m

A4fV r- 10 C') * 0 3' m' ~ a ) a
b- 0 r-4N -

in4 r: 0*.4 (1 U
*-4 .0 m 1 () CI

30 I ~- 0 ,n4 m0 v z' en0 xzI I

zfr~N ' 4 D 4 r -4a

r- 04 LA r-4 w- a) qv

E-431L L N

r--4

0 ~ ~ r .0 C' %9~I 4~~

0 N. '4 0 c .

553



T - '-M ,77777 7 7 P

*however, in these tests TLA is substantially outperformed by

the alternate systems. For the pure network problems, best

performance is achieved by (Figure il):

Contiguous arcs by head node,

Candidate queue pricing,

Preorder traversal, and

Aggregated successors.

TLA does not incorporate any of these features, and is generally

less than half as fast as competitors.

Although GENNET (HQPX) should in theory rival GNET (HUPX)

with pure network problems, the overhead of testing in GENNET

for more general basis structure and the additional computa-

tional burden of floating point arithmetic exact a performance

penalty of about 15 percent.

Figure 12 shows solution times for the generalized trans-

shipment network problems. Note that the starting strategy helps

candidate list performance and hinders the candidate queue.

Arranging arcs contiguously by head node dominates both tail

node and explicit arc list designs. The candidate queue pro-

vides good performance it accompanied with contiguous arcs by

head node. Preorder traversal continues to provide better

performance than triple label representation in all desiyn

contexts. Aggregated Successors offer a pronounced advantage.

GENNET (HQPX) provides best overall pertormance. It

offers a decided advantage on problems with many more sinks

than sources, a situation common in real life.

54

,,~~~~ ~~ &u*a *a.. . . .



Figure 13 displays performance of GENNET(GN, HPQX) applied

to a set of (GN) problems extracted from a collection of real-

world LP/MIP models [i01. Despite the slight additional floating

point arithmetic required to solve (GN), GENNET solves these

problems much faster than would be predicted by experience with

randomly generated GT problems. Tuning of the pricing mechanism

greatly enhances this difference.

Problem Nodes Arcs Seconds Pivots

AIRLP 170 3,040 2.62 420

COAL 170 3,923 1.80 471

STEEL 422 1,279 .39 499

FOAM 951 4,953 3.74 1,258

ODSAS(GN) 1,431 4,615 3.22 1,427

ALUMINUM(GN) 2,178 7,216 3.57 2,794

REFINE(GN) 3,110 6,617 4.72 3,322

FOOD(GN) 3,716 13,907 12.11 7,004

(Big-M = IU x largest cost coefficient)

Figure 13. ((GN) Test Problems
(GN rows extracted from real-world LP/MIP models [10]
with null columns deleted and slack arcs added.)

55



Close scrutiny of solution trajectories lends some insight

into GENNET's good performance. GENNET has a one-pass itera-

tion unless a cycle is formed; a cycle is formed on only 5-to-24

percent of all iterations for these problem sets--5-to-lU percent

for most problems. Also, the explicit (non-aggregated) subset of

the nodes is remarkably small, seldom numbering much more than

• the number of source nodes. Finally, the length of backpaths is

quite short, averaging about the number of echelons (path length

from sources to sinks) in the model, or just more than 2 in these

problems.

56

; ? . ", . % \" .. ,,, ' ,.',., :,;v,-.....:.,.-..-- -. -.,-:..:,,-, -. -. -.. €.'.



6. CONCLUSIUN

The generalized network system GENNET is small, fast and

easy to modify. Adaptations have already included using (ENNET

in a system to solve generalizea networks with complicating side

constraints an/or complicating variables (Mcbride [30]). GENNET

has also been incorporated in a powerful microcomputer-based

network optimization system by Brown, Dutt and Finley [7,16J

using an APPLE-II host and PASCAL implementation language.

Modifications for mixed integer generalized networks have also

been tested (though not with care sufticient to warrant

publication at this time). GENNET has proven to be a worthy

successor of GNET [6J.

Preorder traversal is appealing for its mathematical and

implementation elegance, and has proven to be efficient and

flexible for generalized networks (as it was tor pure networks).

(Adolphson and Heum [i] have also suspected this and have in-

dependently pursued this avenue.)

Experience shows that the GENNET design performs much more

efficiently on real models than on randomly generated test

problems ot nominally equivalent size; this design is also tech-

nically and philosophically compatible with the various systems

we have devised for solviny other more general classes ot

optimization models.

57



dd

The F ORTRAN programs GENNET--(GT) and (GN) versions--

(Copyright 19U4) are licensed to researchers for a nominal

charge on an exclusive use basis. For further information write

the authors via P.O. Box 1832, Alexandria, Virginia, 22313, USA.

584
%1

%]p

p.

5Py8 '.%%% i**



7. ACKNOWLEDGMENTS

Gordon Bradley and Glenn Graves have always offered us

complete support in our work: we gratefully acknowledge their

help and encouragement. Rick Rosenthal contributed many valu-

able suggestions to clarify the presentation. John Tomlin has

discovered some subtle imprecisions in our description.

Kevin Wood has taught from early manuscripts and suffered their

shortcomings nobly.

9.

.9

1.

.9



.i .

REFERENCES

1. Adolphson, D. and Heum, L., "Computational Experiments on
a Threaded Index Generalized Network Code," presented at
the Houston URSA/TIMS Meeting, October 14, 1981.

* 2. Balachandran, V., "An Integer Generalized Transportation
Model for Optimal Job Assignment in Computer Networks,"
Operations Research, Vol. 24, No. 4 (1976), pp. 742-759.

3. Barr, R., Glover, F., and Klingman, D., "An Improved
Version of the Out-of-Kilter Method and a Comparative
Study of Computer Codes," Mathematical Programming,
Vol. 7, No. 1 (1974), pp. 60-87.

4. Bland, R., "New Finite Pivoting Rules for the Simplex
* Method," Mathematics of Operations Research, Vol. 2, No. 2
N (1977), pp. 103-107.

5. Bradley, G., "Survey of Deterministic Networks," AIIE
Transactions, Vol. 7, No. 3 (1975), pp. 222-234.

6. , Brown, G., and Graves, G., "Design and Implemen-
tation of Large Scale Primal Transshipment Algorithms,"
Management Science, Vol. 24 (1977), No. 1, pp. 1-34.

7f Brown, Ge, Duff, R., and Finley, M., "Design and Lemonstra-
tion of a Microcomputer-Based Network optimization system,"
presented and demonstrated at the Detroit URSA/TIMS Meeting,
April 19, 1982.

8. , and Graves, G., "Design and Implementation of a
Large Scale (Mixed Integer, Nonlinear) Optimization
System," paper presented at the Las Vegas ORSA/TIMS
Meeting, November 1975.

9. , and McBride, R., "Exploiting Large-Scale Networks
with Gains," paper presented at the Houston ORSA/TIMS
Meeting, October 14, 1981.

10. _, , and Wood, K., "Extracting Embedded
Generalized Networks from Linear Programming Problems,"
Technical Report, University of Southern California,
August 1983.

11. _, and Wright, W., "Automatic Identification of
Embedded Network Rows in Large-Scale uptimization Models,"
Mathematical Programming (to appear).

12. Cunningham, W., "A Network Simplex Method," Mathematical
Programming, Vol. II, No. 2 (197b), pp. 1Ub-116.

13. Uantzig, G., Linear Programming and Extensions, Princeton
University Press, Princeton, New Jersey, 19b3.

60



14. Eisemann, D., "The Generalized Stepping Stone Method for
the Machine Loading Model," Management science, Vol. 11,
No. 1 (1964), pp. 154-177.

15. Elam, J., Glover, F., and Klingman, D., "A Strongly Con-
vergent Primal Simplex Algorithm for Generalized Networks,"
Mathematics of Operations Research, Vol. 4, No. 1 (1979),
pp. 39-59.

16. Finley, M., "An Extended Microcomputer-Based Network
Optimization Package," MS Thesis, Naval Postgraduate
School, Monterey, September 1982.

17. Glover, F., Hultz, J., Klingman, D., and Stutz, J., "A New

Computer-Based Planning Tool," Research Report CCS 289,
Center for Cybernetic Studies, University of Texas at
Austin, 1977.

10. _ , _ , _ , and , "Generalized Networks:
A Fundamental Computer-Based Planning Tool," Management
Science, Vol. 24, No. 12 (1978), pp. 1209-1220.

19. , Klingman, D. and Stutz, J., "Augmented Threaded
Index Method tor Network Optimization," INFu, Vol. 12,
No. 3 (1974), p. 293-298.

'20. , Karney, D., and Klingman, D., "The Augmented
Predecessor Index Method for Locating Stepping Stone Paths
and Assigning Dual Prices in Distribution Problems,"
Transportation Science, Vol. 6, No. 2 (1972), pp. 171-179.

21. , and Klingman, D., "A Note on Computational
Simplifications in Solving Generalized Transportation
Problems," Transportation Science, Vol. 7, No. 4 (1973),
pp. 351-361.

22. , , and Stutz, J., "Extensions of the Aug-
mented Predecessor Index Method to Generalized Network
Problems," Transportation Science, Vol. 7, No. 4 (1973),
pp. 377-384.

23. Jensen, P. and Barnes, J., Network Flow Programming,
John Wiley and Sons, New York, 1980.

24. , and Bhaumik, G., "A Flow Augmentation Approach to
the Network With Gains Minimum Cost Flow Problem,"
Management Science, Vol. 23, No. 6 (1977), pp. 631-643.

25. Jewell, W., "optimal Flow Through Networks with Gains,"
Operations Research, Vol. 10 (1962), pp. 476-499.

26. Johnson, E., "Networks and Basic Solutions," Operations
Research, Vol. 14, No. 4 (1966), pp. 619-623.

61



27. Kennington, J., and Helgason, R., Algorithms tor Network
Programminl, John Wiley & Sons, New York, 1980.

28. Klingman, D., Napier, A., and Stutz, J., "NETGEN--A Program
for Generating Large Scale (Un) Capacitated Assignment,
Transportation, and Minimum Cost Flow Network Problems,"
Management Science, Vol. 20, No. 5 (1974), pp. 814-821.

29. Maurras, J., "Optimization of the Flow Through Networks
with Gains," Mathematical Programming, Vol. 3 (1972),
pp. 135-144.

30. McBride, R., "Solving Embedded Generalized Network
Problems," Working Paper, School of Business
Administration, University of Southern California,
April 1981.

31. Mulvey, J., "Pivot Strategies for Primal-Simplex Network
Codes," Journal ot the Association tor Computing Machinerz,
Vol. 25 (1978), p. 266-270.

q

62

-m&-* ~ . ** .. ~ .. '.-. *



DISTRIBUTION LIST

NO. OF COPIES

Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93940

Dean of Research
Code 012A
Naval Postgraduate Schoo
Monterey, CA 93940

Library, Code 55
Naval Postgraduate School
Monterey, CA 93940

Professor G. G. Brown bO

Code 55Bw
Naval Postgraduate School
Monterey, CA 93940

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

6



4L14

4,1

of.4 1,'#. p :-
;t ~A41

1EA

,'at-i
Iv 7

* I f If C t


